# olue binder, tab

## FAST GATE TURN-OFF THYRISTORS

Thyristors in TO-220AB envelopes capable of being turned both on and off via the gate. They are suitable for use in high-frequency inverters, resonant power supplies, motor control, horizontal deflection systems etc. The devices have no reverse blocking capability. For reverse blocking operation use with a series diode, for reverse conducting operation use with an anti parallel diode.

### QUICK REFERENCE DATA

|                                      |                    |      | BTW58-1000R | 1300R | 1500R |    |
|--------------------------------------|--------------------|------|-------------|-------|-------|----|
| Repetitive peak off-state voltage    | $v_{\text{DRM}}$   | max. | 1000        | 1300  | 1500  | ٧  |
| Non-repetitive peak on-state current | t ITSM             | max. |             | 50    |       | Α  |
| Controllable anode current           | TCRM               | max. |             | 25    |       | Α  |
| Average on-state current             | <sup>1</sup> T(AV) | max. |             | 6.5   |       | Α  |
| Fall time                            | tf                 | <    |             | 250   |       | ns |

### **MECHANICAL DATA**

Dimensions in mm

Fig.1 TO-220AB



Net mass: 2 g

Note: The exposed metal mounting base is directly connected to the anode.

Accessories supplied on request: see data sheets Mounting instructions and accessories for TO-220 envelopes.



# **BTW58 SERIES**

**RATINGS** 

Limiting values in accordance with the Absolute Maximum System (IEC134)

| Anode to cathode                                                                                              |                  |          | BTW58-10             | 00R | 1300R | 1500R   |
|---------------------------------------------------------------------------------------------------------------|------------------|----------|----------------------|-----|-------|---------|
| Transient off-state voltage                                                                                   | V <sub>DSM</sub> | max.     | 12                   | 00  | 1500  | 1650    |
| Repetitive peak off-state voltage                                                                             | VDRM             | max.     | 10                   | 00  | 1300  | 1500    |
| Working off-state voltage                                                                                     | $v_{DW}$         | max.     | 6                    | 50  | 1200  | 1300    |
| Continuous off-state voltage                                                                                  | $v_D$            | max.     | 6                    | 50  | 750   | 800     |
| Average on-state current (averaged 20 ms period) up to T <sub>mb</sub> = 85 <sup>o</sup>                      |                  |          | IT(AV)               | max | ×.    | 6.5     |
| Controllable anode current                                                                                    |                  |          | ITCRM                | max | x.    | 25      |
| Non-repetitive peak on-state curre<br>t = 10 ms; half-sinewave;                                               | nt               |          |                      |     |       |         |
| T <sub>j</sub> = 120 °C prior to surge                                                                        |                  |          | TSM                  | max | х.    | 50      |
| $1^2$ t for fusing; t = 10 ms                                                                                 |                  |          | l²t                  | max | κ.    | 12.5    |
| Total power dissipation up to T <sub>ml</sub>                                                                 | o = 25 °C        |          | P <sub>tot</sub>     | max | ×.    | 65      |
| Gate to cathode                                                                                               |                  |          |                      |     |       |         |
| Repetitive peak on-state current $T_j = 120  ^{\circ}\text{C}$ prior to surge gate-cathode forward; t = 10 ms | ; half-sinev     | wave     | <sup>[</sup> GFM     | max | ĸ.    | 25      |
| gate-cathode reverse; $t = 20 \mu s$                                                                          |                  |          | IGRM                 | max | κ.    | 25      |
| Average power dissipation (average 20 ms period)                                                              | ed over any      | <b>/</b> | PG(AV)               | max | ×.    | 2.5     |
| Temperatures                                                                                                  |                  |          |                      |     |       |         |
| Storage temperature                                                                                           |                  |          | T <sub>stg</sub>     |     | -40 t | to +150 |
| Operating junction temperature                                                                                |                  |          | $\tau_{j}$           | max | х.    | 120     |
| THERMAL RESISTANCE                                                                                            |                  |          |                      |     |       |         |
| From junction to mounting base                                                                                |                  |          | R <sub>th j-mb</sub> | ==  |       | 1.5     |
| From mounting base to heatsink with heatsink compound                                                         |                  |          | R <sub>th mb-h</sub> | ==  |       | 0.3     |
| with 56367 alumina insulator at<br>heatsink compound (clip-mount                                              |                  |          | R <sub>th mb-h</sub> | =   |       | 0.8     |
|                                                                                                               |                  |          |                      |     |       |         |

<sup>\*</sup>Measured with gate-cathode connected together.

### CHARACTERISTICS

| Anode to cathode                                                                                                                                                                                                    |                     |      |      |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|------|-------|
| On-state voltage<br>I <sub>T</sub> = 5 A; I <sub>G</sub> = 0.2 A; T <sub>j</sub> = 120 °C                                                                                                                           | v <sub>T</sub>      | <    | 3.0  | V*    |
| Rate of rise of off-state voltage that will not trigger any off-state device; exponential method $V_D = 2/3 V_{Dmax}$ ; $V_{GR} = 5 V$ ; $T_j = 120  ^{\circ}\text{C}$                                              | dV <sub>D</sub> /dt | <    | 10   | kV/μs |
| Rate of rise of off-state voltage that will not trigger any device following conduction, linear method I <sub>T</sub> = 5 A; V <sub>D</sub> = V <sub>DRMmax</sub> ; V <sub>GR</sub> = 10 V; T <sub>j</sub> = 120 °C | dV <sub>D</sub> /dt | <    | 1.5  | kV/μs |
| Off-state current<br>$V_D = V_{Dmax}$ ; $T_j = 120  {}^{\circ}\text{C}$                                                                                                                                             | ID                  | <    | 3.0  | mA    |
| Latching current; T <sub>j</sub> = 25 °C                                                                                                                                                                            | (L                  | typ. | 1.0  | A**   |
| Gate to cathode                                                                                                                                                                                                     |                     |      |      |       |
| Voltage that will trigger all devices<br>$V_D = 12 \text{ V}; T_j = 25 ^{\circ}\text{C}$                                                                                                                            | $v_{GT}$            | >    | 1.5  | V     |
| Current that will trigger all devices $V_D = 12 \text{ V}; T_j = 25 ^{\circ}\text{C}$                                                                                                                               | <sup>I</sup> GT     | >    | 200  | mA    |
| Minimum reverse breakdown voltage IGR = 1.0 mA                                                                                                                                                                      | V <sub>(BR)GR</sub> | >    | 10   | V     |
| Switching characteristics (resistive load)                                                                                                                                                                          |                     |      |      |       |
| Turn-on when switched to $I_T$ = 5 A from $V_D$ = 250 V with $I_{GF}$ = 0.5 A; $T_i$ = 25 °C                                                                                                                        |                     |      |      |       |
| delay time                                                                                                                                                                                                          | <sup>t</sup> d      | <    | 0.25 | μs    |



delay time rise time



Fig.2 Waveforms

1.0

μs

- Measured under pulse conditions to avoid excessive dissipation.
- \*\* Below latching level the device behaves like a transistor with a gain dependent on current.



Fig.5 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures.

$$a = form factor = \frac{I_{T(RMS)}}{I_{T(AV)}}$$

P = power excluding switching losses.

 $<sup>^*\</sup>mathrm{T}_{\mathrm{mb}}$  scale is for comparison purposes and is correct only for R  $_{\mathrm{th}\ \mathrm{mb}\cdot\mathrm{a}}$  < 9.6 K/W.

### Switching characteristics (inductive load)

Turn-off when switched from I 
$$_T$$
 = 5 A to V  $_D$  = V  $_D$ RMmax. V  $_G$ R = 10 V; L  $_G$   $\le$  1.0  $\mu$ H; L  $_S$   $\le$  0.25  $\mu$ H; T  $_j$  = 25 °C storage time t  $_s$   $<$  0.5  $\mu$ s fall time t  $_f$   $<$  0.25  $\mu$ s peak reverse gate current I  $_G$ R  $<$  6 A



Fig.3 Waveforms.



Fig.4 Inductive load test circuit

<sup>\*</sup> Indicates stray series inductance only.



Fig.6 Anode current which can be turned off versus anode voltage; inductive load; VGR = 10 V; LG  $\leq$  1.0  $\mu\text{H}$ ; LS  $\leq$  0.25  $\mu\text{H}$ ; T $_{j}$  = 85 °C. \*dVD/dt is calculated from IT/CS.



Fig.7 Anode current which can be turned off versus applied  $dV_D/dt^*$ ; inductive load;  $V_{GR}$  = 10 V;  $L_G \le 1.0~\mu\text{H}$ ;  $L_S \le 0.25~\mu\text{H}$ . \* $dV_D/dt$  is calculated from  $l_T/C_S$ .



Fig.8 Anode current which can be turned off versus applied dV<sub>D</sub>/dt\*; inductive load; V<sub>GR</sub> = 5 V;  $L_G \le 1.0~\mu\text{H}$ ;  $L_S \le 0.25~\mu\text{H}$ . \*dV<sub>D</sub>/dt is calculated from  $l_T/C_S$ .



Fig.9 Minimum gate voltage that will trigger all devices as a function of junction temperature;  $V_D = 12 \text{ V}$ .



Fig.10 Minimum gate current that will trigger all devices as a function of junction temperature; V<sub>D</sub> = 12 V.



Fig.11 Maximum  $V_T$  versus  $I_T$ ; ----  $I_j = 25$  °C; ---  $I_j = 120$  °C.



Fig.12 Peak reverse gate current versus anode current at turn-off; inductive load; VGR = 10 V; IG = 0.2 A; LG = 0.8  $\mu$ H; T $_j$  = 120 °C; maximum values.



Fig. 13 Peak reverse gate current versus applied reverse gate voltage; inductive load;  $I_T$  = 5 A;  $I_G$  = 0.2 A;  $L_G$  = 0.8  $\mu$ H;  $T_j$  = 120 °C; maximum values.



Fig.14 Switching times as a function of junction temperature; V  $_D \geqslant$  250 V; I  $_T$  = 5 A; I  $_GF$  = 0.5 A; V  $_GR$  = 10 V; I  $_G$  = 0.2 A; L  $_G$  = 0.8  $\mu\text{H}$ ; maximum values.



Fig.15 Transient thermal impedance.



Fig.16 Storage and fall times versus applied reverse gate voltage; inductive load; I<sub>T</sub> = 5 A; I<sub>G</sub> = 0.2 A; L<sub>G</sub> = 0.8  $\mu$ H; T<sub>j</sub> = 25 °C; maximum values.



Fig.17 Maximum energy loss at turn-off (per cycle) as a function of anode current and applied dVD/dt (calculated from IT/CS); reapplied voltage sinsusoidal up to VDRM = 1200 V; VGR = 10 V; IG = 0.2 A; LG  $\leq$  1.0  $\mu$ H; LS  $\leq$  0.25  $\mu$ H; Tj = 120 °C.



Fig.18 Energy loss at turn off as a function of junction temperature; I  $_G$  = 0.2 A; V  $_{G\,R}$  = 10 V. Normalised to T  $_j$  = 120 °C.